SterlingOS/docs/SterlingLangDoc.html
2025-05-18 16:37:41 +02:00

478 lines
16 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Sterling Language Documentation</title>
<style>
body { font-family: monospace; background: #0f0f0f; color: #f0f0f0; padding: 2rem; }
h1, h2, h3 { color: #00ffe0; }
pre { background: #1a1a1a; padding: 1rem; overflow-x: auto; }
code { color: #d0d0ff; }
a { color: #00aaff; }
</style>
</head>
<body>
<h1>Sterling Language Documentation</h1>
<p>Version: <code>0.1.0-alpha</code></p>
<h2>Overview</h2>
<p>Sterling is a low-level, strongly typed, systems programming language designed for performance, ABI stability, C interoperability, and full control over memory and hardware. It supports metaprogramming, hot-reloading, inline and raw assembly, and is built for multi-file compilation. It also introduces memory safety primitives and modern low-abstraction control flow enhancements.</p>
<h3>This Document is a work in progress, features are not yet implemented and i use this as a design document to stay true to my vision</h3>
<h2>File Extensions <em>(placeholder, subject to change)</em></h2>
<ul>
<li>Source files: <code>.stg</code></li>
<li>Header files: <code>.sth</code></li>
</ul>
<h2>Function Qualifiers</h2>
<p>Every function must declare its linkage explicitly:</p>
<pre><code>
fn // globally visible, default linkage
fn_static // translation unit-local only
fn_inline // inline-only, no symbol emitted
fn_asm // raw assembly function, globally visible
fn_static_asm // raw assembly function, TU-local only
</code></pre>
<h2>Function Syntax</h2>
<p>All functions must explicitly declare their return type. The only exception is <code>void</code>, which may be omitted for brevity when no return value is intended.</p>
<pre><code>
fn u32 add(u32 a, u32 b) {
return (a + b);
}
fn_extern i32 printf(const char* fmt, ...);
fn_inline u32 max(u32 a, u32 b) {
return ((a > b) ? a : b);
}
fn exit() {
// equivalent to fn void exit()
}
</code></pre>
<h2>Assembly Functions</h2>
<p>Write raw x86_64 assembly using <code>fn_asm</code> or <code>fn_static_asm</code>. Symbol, section, and global declaration are implicit.</p>
<pre><code>
fn_asm void* memset(void* dst, u8 value, u64 size) {
test rdx, rdx
je .done
mov rax, rsi
mov rdi, rdi
mov rcx, rdx
rep stosb
.done:
mov rax, rdi
ret
}
</code></pre>
<h2>Syscalls</h2>
<p>System calls are allowed via <code>fn_asm</code> or wrapped using concrete ABI-aware interfaces. Example:</p>
<pre><code>
fn_asm void exit() {
mov rax, 60 ; syscall: exit
mov rdi, 0 ; exit code
syscall
ret
}
</code></pre>
<h2>Types</h2>
<p>Sterling supports explicitly sized, ABI-stable primitive types. Signed and unsigned integer types are defined as follows:</p>
<pre><code>
i8, i16, i32, i64 // signed integers
u8, u16, u32, u64 // unsigned integers
f32, f64 // 32-bit and 64-bit IEEE floats
bool // 1-byte boolean, 0 or 1 only
char // 1-byte character (UTF-8)
</code></pre>
<p>Pointer types:</p>
<pre><code>
T* // Pointer to type T
ptr* // Special pointer with implicit coercion allowed (e.g., for GC, reflective systems)
void* // Opaque pointer with explicit cast required
</code></pre>
<p>All types have explicitly defined size and alignment. Structs support default values and zero-initialization rules:</p>
<pre><code>
typedef struct {
u32 x = 5;
u32 y;
} vec2u;
vec2u a = {}; // x = 5, y = 0
vec2u b = {0}; // x = 0, y = 0
vec2u c; // x = 0, y = 0 (default zero-init)
</code></pre>
<p>To opt out of default zero-initialization:</p>
<pre><code>
@raw u32 raw_val; // uninitialized
</code></pre>
<h2>Memory Model</h2>
<p>Sterling uses explicit, manual memory management by default. All variables are zero-initialized unless explicitly marked with <code>@raw</code>. Heap allocation is done via standard system or custom allocators.</p>
<ul>
<li><strong>Stack</strong>: Local automatic variables</li>
<li><strong>Heap</strong>: malloc/free or custom allocators</li>
<li><strong>Zero-cost abstraction</strong>: structs and stack values are passed by value unless explicitly passed by pointer</li>
</ul>
<p>Alignment and packing are controllable per type (TBD syntax). All layout is predictable and optimized for cache behavior. There are no hidden fields, vtables, or RTTI overhead.</p>
<h2>Operating System Development Features</h2>
<ul>
<li>Direct register access: <code>reg.rax</code>, <code>reg.cr3</code>, etc.</li>
<li>Memory barriers: <code>memory_fence_acquire()</code>, <code>memory_fence_release()</code></li>
<li>Segment descriptor support: GDT, IDT, TSS descriptors definable via built-in types</li>
<li>Interrupt handler definitions: <code>fn_isr</code> for IRQ, <code>fn_trap</code> for fault handlers</li>
<li>Syscall traps: <code>fn_syscall</code> with ABI-safe handling</li>
<li>No external ASM required: use <code>fn_asm</code> to write boot routines and context switches inline</li>
<li>Inline port I/O: <code>outb(port, val)</code>, <code>inw(port)</code>, etc.</li>
<li>MSR and control register access: readable and writable constants like <code>CR0_PG</code>, <code>MSR_EFER</code></li>
<li>Binary blob inclusion: <code>embed_binary("boot.bin")</code></li>
<li>Freestanding boot targets: no runtime required, bootloader/kernels fully supported</li>
</ul>
<h2>Metaprogramming</h2>
<p><em>TODO: Describe 'meta' keyword, templating, compile-time codegen, restrictions on type inference.</em></p>
<h2>ABI and Interop</h2>
<p><em>TODO: Specify ABI model (System V AMD64), calling convention details, struct/pointer representation rules.</em></p>
<h2>Threading</h2>
<p><em>TODO: Describe standard threading model, scheduler integration, context switching, green threads API.</em></p>
<h2>Graphics and Rendering</h2>
<p><em>TODO: Describe native rendering interface, GPU abstraction layer, and access to OpenGL/DirectX backends.</em></p>
<h2>Build and Compilation Model</h2>
<p><em>TODO: AOT compilation, linker behavior, multi-file project structure, module system (if any).</em></p>
</body>
</html>
<body>
<h2>Function Syntax</h2>
<p>Return types are mandatory and must be declared explicitly. The only exception is <code>void</code>, which can be omitted as it represents no return value.</p>
<pre><code>
fn u32 add(u32 a, u32 b) {
return a + b;
}
fn_extern i32 printf(const char* fmt, ...);
fn_inline u32 max(u32 a, u32 b) {
return (a > b) ? a : b;
}
fn exit() {
// equivalent to fn void exit()
}
</code></pre>
<h2>Assembly Functions</h2>
<p>Write raw x86_64 assembly using <code>fn_asm</code> or <code>fn_static_asm</code>. Symbol, section, and global declarations are implicit.</p>
<pre><code>
fn_asm void* memset(void* dst, u8 value, u64 size) {
test rdx, rdx
je .done
mov rax, rsi
mov rdi, rdi
mov rcx, rdx
rep stosb
.done:
mov rax, rdi
ret
}
</code></pre>
<h2>Syscalls</h2>
<p>System calls can be issued directly using <code>fn_asm</code>. Wrappers may be defined for ABI-safe interfaces.</p>
<pre><code>
fn_asm void exit() {
mov rax, 60 ; syscall: exit
mov rdi, 0 ; exit code
syscall
ret
}
</code></pre>
<h2>Types</h2>
<pre><code>
i8, i16, i32, i64 // signed integers
u8, u16, u32, u64 // unsigned integers
f32, f64 // IEEE floats
bool // 1-byte boolean
char // UTF-8 byte
</code></pre>
<p>Pointer types:</p>
<pre><code>
T* // pointer to T
ptr* // special pointer with implicit coercion
void* // opaque pointer, explicit cast only
</code></pre>
<p>Structs support defaults and zero-initialization:</p>
<pre><code>
typedef struct {
u32 x = 5;
u32 y;
} vec2u;
vec2u a = {}; // x = 5, y = 0
vec2u b = {0}; // x = 0, y = 0
vec2u c; // x = 0, y = 0 (default)
</code></pre>
<pre><code>
u32 raw @raw; // opt-out of zero-init
</code></pre>
<h2>Memory Model</h2>
<ul>
<li>Manual memory management by default</li>
<li>Zero-initialization unless <code>@raw</code></li>
<li>Explicit control over layout, alignment, packing</li>
</ul>
<p>Arrays, strings, and bitfields are memory-safe by default with bounds-aware utility functions and type traits.</p>
<h2>Metaprogramming</h2>
<pre><code>
meta define_add(T);
T add(T a, T b) {
return a + b;
}
</code></pre>
<p>Only primitive types are allowed without explicit overloads. Structs must implement <code>meta_add</code> manually. Compile-time execution is guaranteed only for pure expressions.</p>
<h2>Control Flow Extensions</h2>
<p>Designed for structured, optimized low-level behavior:</p>
<pre><code>
match_const value {
0b0000: return EMPTY;
0b0001: return CORNER;
...
}
fallthrough_block(value) {
0b0011: case_edge;
0b1010: case_edge;
label case_edge:
// handle edge
break;
}
loop_outer: while (true) {
loop_inner: while (true) {
if (x) break loop_outer;
}
}
</code></pre>
<h2>Bitfields and Bit Types</h2>
<p>Sterling supports <code>bit</code> and <code>bitfield</code> types to define compact data structures. Useful for efficient array storage, runtime layout configuration, and manual control of field width.</p>
<pre><code>
bitfield struct TileMask {
bit corner : 1;
bit edge : 1;
bit fill : 1;
...
}
</code></pre>
<h2>Memory-Aware Structures</h2>
<p>Sterling provides tools to construct layout-aware containers like aligned arrays, flexible bitfield arrays, and layout-optimized structures that adjust at runtime.</p>
<h2>Nested Loop Control</h2>
<p>Use labeled loop exits or control redirection to break from specific nesting levels without deep stacks:</p>
<pre><code>
while (game_running) {
while (update_running) {
if (exit_to_game) break @2;
}
}
</code></pre>
<h2>Threading</h2>
<p><em>TODO: Specify green threading model, context switch ABI, thread-local storage and atomic operations.</em></p>
<h2>ABI and Interop</h2>
<p>Sterling uses the System V AMD64 ABI. C interop requires exact type and calling signature match. All exported symbols must declare calling convention and linkage explicitly. Casts must be intentional. <code>fn test() -> i32</code> syntax is not supported; return type must be declared in C form as <code>fn i32 test()</code>.</p>
<h2>Build and Compilation</h2>
<p><em>TODO: Describe Sterling to C translation, compiler phases, linking steps, macro expansion and preprocessing rules.</em></p>
</body>
</html>
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Sterling Language Documentation</title>
<style>
body { font-family: monospace; background: #0f0f0f; color: #f0f0f0; padding: 2rem; }
h1, h2, h3 { color: #00ffe0; }
pre { background: #1a1a1a; padding: 1rem; overflow-x: auto; }
code { color: #d0d0ff; }
a { color: #00aaff; }
</style>
</head>
<body>
<h1>Sterling Language Documentation</h1>
<p>Version: <code>0.1.0-alpha</code></p>
<h2>Overview</h2>
<p>Sterling is a low-level, strongly typed, systems programming language designed for performance, ABI stability, C interoperability, and full control over memory and hardware. It supports metaprogramming, hot-reloading, inline and raw assembly, and is built for multi-file compilation.</p>
<h2>File Extensions</h2>
<ul>
<li>Source files: <code>.stg</code></li>
<li>Header files: <code>.sth</code> <em>(placeholder, subject to change)</em></li>
</ul>
<h2>Function Qualifiers</h2>
<p>Every function must declare its linkage explicitly:</p>
<pre><code>fn // globally visible, default linkage
fn_static // translation unit-local only
fn_inline // inline-only, no symbol emitted
fn_asm // raw assembly function, globally visible
fn_static_asm // raw assembly function, TU-local only</code></pre>
<h2>Function Syntax</h2>
<p>All functions must explicitly declare their return type. The only exception is <code>void</code>, which may be omitted for brevity when no return value is intended.</p>
<pre><code>fn u32 add(u32 a, u32 b) {
return a + b;
}
fn_inline u32 max(u32 a, u32 b) {
return (a > b) ? a : b;
}
fn exit() {
// equivalent to fn void exit()
}</code></pre>
<h2>Assembly Functions</h2>
<p>Write raw x86_64 assembly using <code>fn_asm</code> or <code>fn_static_asm</code>. Symbol, section, and global declaration are implicit.</p>
<pre><code>fn_asm void* memset(void* dst, u8 value, u64 size) {
test rdx, rdx
je .done
mov rax, rsi
mov rdi, rdi
mov rcx, rdx
rep stosb
.done:
mov rax, rdi
ret
}</code></pre>
<h2>Syscalls</h2>
<p>System calls are allowed via <code>fn_asm</code> or wrapped using concrete ABI-aware interfaces. Example:</p>
<pre><code>fn_asm void exit() {
mov rax, 60 ; syscall: exit
mov rdi, 0 ; exit code
syscall
ret
}</code></pre>
<h2>Register Access</h2>
<p>Sterling exposes raw CPU registers as language-level primitives. This is intended for kernel, embedded, and runtime-critical tasks.</p>
<pre><code>fn u64 get_rbp() {
return rbp;
}
fn void set_rsp(u64 val) {
rsp = val;
}</code></pre>
<p>Supported registers: <code>rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8..r15</code>. Usage outside permitted contexts may trigger compile-time errors. Clobber rules and calling conventions must be respected.</p>
<h2>Types</h2>
<p>Sterling supports explicitly sized, ABI-stable primitive types. Signed and unsigned integer types are defined as follows:</p>
<pre><code>i8, i16, i32, i64 // signed integers
u8, u16, u32, u64 // unsigned integers
f32, f64 // 32-bit and 64-bit IEEE floats
bool // 1-byte boolean, 0 or 1 only
char // 1-byte character (UTF-8)</code></pre>
<p>Pointer types:</p>
<pre><code>T* // Pointer to type T
ptr* // Special pointer with implicit coercion allowed (e.g., for GC, reflective systems)
void* // Opaque pointer with explicit cast required</code></pre>
<p>All types have explicitly defined size and alignment. Structs support default values and zero-initialization rules:</p>
<pre><code>typedef struct {
u32 x = 5;
u32 y;
} vec2u;
vec2u a = {}; // x = 5, y = 0
vec2u b = {0}; // x = 0, y = 0
vec2u c; // x = 0, y = 0 (default zero-init)</code></pre>
<p>To opt out of default zero-initialization:</p>
<pre><code>u32 raw_val @raw; // uninitialized</code></pre>
<h2>Memory Model</h2>
<p>Sterling uses explicit, manual memory management by default. All variables are zero-initialized unless explicitly marked with <code>@raw</code>. Heap allocation is done via standard system or custom allocators.</p>
<ul>
<li><strong>Stack</strong>: Local automatic variables</li>
<li><strong>Heap</strong>: malloc/free or custom allocators</li>
<li><strong>Zero-cost abstraction</strong>: structs and stack values are passed by value unless explicitly passed by pointer</li>
</ul>
<p>Alignment and packing are controllable per type (TBD syntax). All layout is predictable and optimized for cache behavior. There are no hidden fields, vtables, or RTTI overhead.</p>
<h2>Metaprogramming</h2>
<p><em>TODO: Describe 'meta' keyword, templating, compile-time codegen, restrictions on type inference.</em></p>
<h2>ABI and Interop</h2>
<p><em>TODO: Specify ABI model (System V AMD64), calling convention details, struct/pointer representation rules.</em></p>
<h2>Threading</h2>
<p><em>TODO: Describe standard threading model, scheduler integration, context switching, green threads API.</em></p>
<h2>Graphics and Rendering</h2>
<p><em>TODO: Describe native rendering interface, GPU abstraction layer, and access to OpenGL/DirectX backends.</em></p>
<h2>Build and Compilation Model</h2>
<p><em>TODO: AOT compilation, linker behavior, multi-file project structure.</em></p>
</body>
</html>